KREUZADER (Posts tagged deep learning)

1.5M ratings
277k ratings

See, that’s what the app is perfect for.

Sounds perfect Wahhhh, I don’t wanna
AI Is Not out to Get Us“AI is doing some impressive things—last week, for example, makers of the AlphaGo computer program reported that their software has learned to navigate the intricate London subway system like a native. Even the White House has...

AI Is Not out to Get Us

AI is doing some impressive things—last week, for example, makers of the AlphaGo computer program reported that their software has learned to navigate the intricate London subway system like a native. Even the White House has jumped on the bandwagon, releasing a report days ago to help prepare the U.S. for a future when machines can think like humans.

But AI has a long way to go before people can or should worry about turning the world over to machines, says Oren Etzioni, a computer scientist who has spent the past few decades studying and trying to solve fundamental problems in AI. Etzioni is currently the chief executive officer of the Allen Institute for Artificial Intelligence (AI2), an organization that Microsoft co-founder Paul Allen formed in 2014 to focus on AI’s potential benefits—and to counter messages perpetuated by Hollywood and even other researchers that AI could menace the human race.

Source: scientificamerican.com
artificial intelligence deep learning

In a paper published Monday, a team of researchers and engineers in Microsoft Artificial Intelligence and Research reported a speech recognition system that makes the same or fewer errors than professional transcriptionists.  The researchers reported a word  error rate (WER) of 5.9 percent, down from the 6.3 percent WER the team reported just last month.

The 5.9 percent error rate is about equal to that of people who were asked to transcribe the same conversation, and it’s the lowest ever recorded against the industry standard Switchboard speech recognition task.

[…]

To reach the human parity milestone, the team used Microsoft’s Computational Network Toolkit, a homegrown system for deep learning that the research team has made available on GitHub via an open source license.

natural language processing neural networking machine learning deep learning

That dramatic progress has sparked a burst of activity. Equity funding of AI-focused startups reached an all-time high last quarter of more than $1 billion, according to the CB Insights research firm. There were 121 funding rounds for such startups in the second quarter of 2016, compared with 21 in the equivalent quarter of 2011, that group says. More than $7.5 billion in total investments have been made during that stretch—with more than $6 billion of that coming since 2014. (In late September, five corporate AI leaders—Amazon, Facebook, Google, IBM, and Microsoft—formed the nonprofit Partnership on AI to advance public understanding of the subject and conduct research on ethics and best practices.)

Google had two deep-learning projects underway in 2012. Today it is pursuing more than 1,000, according to a spokesperson, in all its major product sectors, including search, Android, Gmail, translation, maps, YouTube, and self-driving cars. IBM’s IBM 0.47% Watson system used AI, but not deep learning, when it beat two Jeopardy champions in 2011. Now, though, almost all of Watson’s 30 component services have been augmented by deep learning, according to Watson CTO Rob High.

neural networks machine learning deep learning artificial intelligence

Today, we’re making the latest version of our image captioning system available as an open source model in TensorFlow. This release contains significant improvements to the computer vision component of the captioning system, is much faster to train, and produces more detailed and accurate descriptions compared to the original system. 

google tensorflow machine learning neural networking deep learning artificial intelligence image recognition

Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and © harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.

image

Originally posted by twogodsgotowar

machine learning artificial intelligence neural networking deep learning
“With new neural network architectures popping up every now and then, it’s hard to keep track of them all. Knowing all the abbreviations being thrown around (DCIGN, BiLSTM, DCGAN, anyone?) can be a bit overwhelming at first.
So I decided to compose a...

With new neural network architectures popping up every now and then, it’s hard to keep track of them all. Knowing all the abbreviations being thrown around (DCIGN, BiLSTM, DCGAN, anyone?) can be a bit overwhelming at first.

So I decided to compose a cheat sheet containing many of those architectures. Most of these are neural networks, some are completely different beasts. Though all of these architectures are presented as novel and unique, when I drew the node structures… their underlying relations started to make more sense.

Source: asimovinstitute.org
neural networking machine learning deep learning artificial intelligence
“As a PhD student in Deep Learning, as well as running my own consultancy, building machine learning products for clients I’m used to working in the cloud and will keep doing so for production-oriented systems/algorithms. There are however huge...

As a PhD student in Deep Learning, as well as running my own consultancy, building machine learning products for clients I’m used to working in the cloud and will keep doing so for production-oriented systems/algorithms. There are however huge drawbacks to cloud-based systems for more research oriented tasks where you mainly want to try out various algorithms and architectures, to iterate and move fast. To make this possible I decided to custom design and build my own system specifically tailored for Deep Learning, stacked full with GPUs.

Source: graphific.github.io
deep learning nvidia machine learning artificial intelligence neural networking
neural networking machine learning deep learning artificial intelligence

The problem is that there are orders of magnitude more mathematical functions than possible networks to approximate them. And yet deep neural networks somehow get the right answer.

Now Lin and Tegmark say they’ve worked out why. The answer is that the universe is governed by a tiny subset of all possible functions. In other words, when the laws of physics are written down mathematically, they can all be described by functions that have a remarkable set of simple properties.

So deep neural networks don’t have to approximate any possible mathematical function, only a tiny subset of them.

deep learning machine learning neural networking artificial intelligence mathematics physics