KREUZADER (Posts tagged biology)

1.5M ratings
277k ratings

See, that’s what the app is perfect for.

Sounds perfect Wahhhh, I don’t wanna
Giant Genetic Map Shows Life’s Hidden Links“Can we use what happens when a pair of genes is destroyed to find out their function? This is the question that Charles Boone and Brenda Andrews, biologists at the University of Toronto, began to ask...

Giant Genetic Map Shows Life’s Hidden Links

Can we use what happens when a pair of genes is destroyed to find out their function? This is the question that Charles Boone and Brenda Andrews, biologists at the University of Toronto, began to ask themselves about 17 years ago. If you know what one gene is doing in the cell, and destroying it kills the cell only if another, more mysterious gene goes too — can that give you clues to what the mystery gene does?

To answer the question, they began to orchestrate a precise campaign to destroy, two by two, all the genes in yeast. Using a fleet of yeast-growing robots, they created approximately 23 million strains of yeast, each effectively missing a pair of genes. By watching to see whether the yeast lived, died or grew sickly, the researchers generated data about the existence of relationships between the genes.

Now Boone, Andrews and a large team of collaborators have published in Science a sprawling report on the nearly two-decade-long set of experiments. In all, they found 550,000 pairs that, when removed, result in sickness or death. This network of genetic connections reveals a previously hidden scaffolding that underlies the operation of the cell. “The complete picture,” Boone said, “clearly shows a beautiful hierarchical structure.”

Source: quantamagazine.org
biology genetics genetic engineering

The research team is led by Harald Ott, MD, of the MGH CRM and the Department of Surgery, senior author of the paper. In 2008, Ott developed a procedure for stripping the living cells from a donor organ with a detergent solution and then repopulating the remaining extracellular matrix scaffold with organ-appropriate types of cells. Since then his team has used the approach to generate functional rat kidneys and lungs and has decellularized large-animal hearts, lungs and kidneys. This report is the first to conduct a detailed analysis of the matrix scaffold remaining after decellularization of whole human hearts, along with recellularization of the cardiac matrix in three-dimensional and whole-heart formats.

biology stem cells

If you pick a random species of insect and look inside its cells, there’s a 40 percent chance that you’ll find bacteria called Wolbachia. And if you look at Wolbachia carefully, you’ll almost certainly find a virus called WO, lying in wait within its DNA. And if you look at WO carefully, as Seth and Sarah Bordenstein, from Vanderbilt University, have done, you’ll find parts of genes that look like they come from animals—including a toxin gene that makes the bite of the black widow spider so deadly.

How on earth did this nested set-up evolve? How did a spider gene end up in a virus that lives inside bacteria that live inside the cells of insects?

image
metal gear metal gear solid biology virus

The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation.

[…]

Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

image

Originally posted by gameraboy

shields up

radiation space biology mars

To make carbon-reinforced silk, Yingying Zhang and her colleagues at Tsinghua University fed the worms mulberry leaves sprayed with aqueous solutions containing 0.2% by weight of either carbon nanotubes or graphene and then collected the silk after the worms spun their cocoons, as is done in standard silk production. Treating already spun silk would require dissolving the nanomaterials in toxic chemical solvents and applying those to the silk, so the feeding method is simpler and more environmentally friendly.

In contrast to regular silk, the carbon-enhanced silks are twice as tough and can withstand at least 50% higher stress before breaking. The team heated the silk fibers at 1,050 °C to carbonize the silk protein and then studied their conductivity and structure. The modified silks conduct electricity, unlike regular silk.

silk chemistry biology

The team put 110 bumble bees, one at a time, next to the table to see what they would do. Some tugged at the strings and gave up, but two actually kept at it until they retrieved the sugar water. In another series of experiments, the researchers trained the bees by first placing the flower next to the bee and then moving it ever farther under the table. More than half of the 40 bees tested learned what to do, Chittka and his colleagues report this week in PLOS Biology.

Next, the researchers placed untrained bees behind a clear plastic wall so they could see the other bees retrieving the sugar water. More than 60% of the insects that watched knew to pull the string when it was their turn. In another experiment, scientists put bees that knew how to pull the string back into their colony and a majority of the colony’s workers picked up string pulling by watching one trained bee do it when it left the colony in search of food. The bees usually learned this trick after watching the trained bee five times, and sometimes even after one observation. Even after the trained bee died, string pulling continued to spread among the colony’s younger workers.  

insects bees biology

It’s a boy! A five-month-old boy is the first baby to be born using a new technique that incorporates DNA from three people, New Scientist can reveal. “This is great news and a huge deal,” says Dusko Ilic at King’s College London, who wasn’t involved in the work. “It’s revolutionary.”

The controversial technique, which allows parents with rare genetic mutations to have healthy babies, has only been legally approved in the UK. But the birth of the child, whose Jordanian parents were treated by a US-based team in Mexico, should fast-forward progress around the world, say embryologists.

biology genetics genetic engineering

Lanner, however, says he is initially planning only to study the modified embryos for the first seven days of their growth and would never let them develop past 14 days. The potential benefits could be enormous, he argues.

“Having children is one of the major drives for a lot of people,” Lanner says. “For people who do struggle with this, it can tend to become an extremely important part of your life.”

Lanner also hopes to learn things that could help scientists who are trying to turn stem cells from human embryos into new treatments for diseases.

“If we can understand how these early cells are regulated in the actual embryo, this knowledge will help us in the future to treat patients with diabetes, or Parkinson, or different types of blindness and other diseases,” he says. “That’s another exciting area of research.”

image

Originally posted by storybookvisitor

genetic engineering biology
Video gamers outdo scientists in contest to discover protein’s shape
“ANN ARBOR—Gamers playing the popular online puzzle game Foldit beat scientists, college students and computer algorithms in a contest to see who could identify a particular...

Video gamers outdo scientists in contest to discover protein’s shape 

ANN ARBOR—Gamers playing the popular online puzzle game Foldit beat scientists, college students and computer algorithms in a contest to see who could identify a particular protein’s shape.

The study findings have implications for video game enthusiasts and classroom instruction, and showcase the positive impact citizen science can have on research.

“It shows that anybody with a 3-D mentality, including gamers, can do something that previously only scientists did, and in doing so they can help scientific progress,” said study co-author James Bardwell, University of Michigan professor in molecular, cellular and developmental biology.

Source: ns.umich.edu
biology

Rutz and a team of researchers worked with a group of 104 ‘Alalā, or Hawaiian crows and discovered that they used sticks in ways that are very similar to New Caledonian crows. Though the two species are not closely related, they have a few traits in common. Both have long, straight beaks and eyes that are very mobile, which the researchers believe make them particularly adept at using their beaks to guide sticks. To grab a tasty grub out of a log, a crow has to find a stick of the right length, smooth it by removing bark or branches, and then thread it into a small opening to root around and yank out the unlucky invertebrate.

smartest dinosaurs

crows birds biology avian intelligence

In an important breakthrough for the forensic science community, researchers have developed the first-ever biological identification method that exploits the information encoded in proteins of human hair.

Scientists from Lawrence Livermore National Laboratory (LLNL) and a Utah startup company have developed the groundbreaking technique, providing a second science-based, statistically validated way to identify people and link individuals to evidence in addition to DNA profiling.

The new protein identification technique will offer another tool to law enforcement authorities for crime scene investigations and archaeologists, as the method has been able to detect protein in human hair more than 250 years old.

paging barry allen

image

Originally posted by my-bl4ckbird

forensics police biology

A key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)–plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front. While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front, we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behind more sensitive lineages. The MEGA-plate provides a versatile platform for studying microbial adaption and directly visualizing evolutionary dynamics.

biology genetics medicine antibiotics