spacex crew dragon capsule docking with the international space station during the unmanned demo mission 1, 2019-03-03
NASA.EVA
from 2004:
At 8:30 PM PST on January 3, 2004, a thousand pounds of metal sent from Earth blazed through the sky of Mars. Six minutes later, after sprouting a parachute and airbags, this chunk of metal slammed into the red planet, bounced 28 times over 300 meters and slowly rolled to a stop. The airbags deflated, revealing the metal pyramid they protected, which in turn unfolded to reveal a six-wheeled robotic geologist named Spirit.
So began a three-month exploration of Mars. For a team of hundreds of scientists and engineers at NASA’s Jet Propulsion Laboratory, Spirit is serving as our eyes—and our toolbox, using the tools at the tip of its foldaway arm—during a new chapter in the exploration of our neighbor planet. As is Spirit’s twin, Opportunity, which duplicated Spirit’s performance three weeks later on the opposite side of Mars. And what are all those scientists and engineers using to drive the rovers? They are using Linux.
The Mars Exploration Rover (MER) mission marks a turning point for use of Linux in the space program. Linux has been used on space missions before—a Debian laptop rode the Space Shuttle on STS-83, for instance, as long ago as 1997. But the Mars Exploration Rover Project is the first JPL mission to use Linux systems for critical mission operations. On MER, Linux is being used for high-level science planning and for low-level command sequencing, visualization and simulation.
Gemini-11 prime and backup crews are pictured at the Gemini Mission Simulator at Cape Kennedy, Florida. Left to right are astronauts William A. Anders, backup crew pilot; Richard F. Gordon Jr., prime crew pilot; Charles Conrad Jr. (foot on desk), prime crew command pilot; and Neil A. Armstrong, backup crew command pilot.
Citizen Scientists Find New World with NASA Telescope
Using data from NASA’s Kepler space telescope, citizen scientists have discovered a planet roughly twice the size of Earth located within its star’s habitable zone, the range of orbital distances where liquid water may exist on the planet’s surface. The new world, known as K2-288Bb, could be rocky or could be a gas-rich planet similar to Neptune. Its size is rare among exoplanets - planets beyond our solar system.
“It’s a very exciting discovery due to how it was found, its temperate orbit and because planets of this size seem to be relatively uncommon,” said Adina Feinstein, a University of Chicago graduate student who discussed the discovery on Monday, Jan. 7, at the 233rd meeting of the American Astronomical Society in Seattle. She is also the lead author of a paper describing the new planet accepted for publication by The Astronomical Journal.
Located 226 light-years away in the constellation Taurus, the planet lies in a stellar system known as K2-288, which contains a pair of dim, cool M-type stars separated by about 5.1 billion miles (8.2 billion kilometers) - roughly six times the distance between Saturn and the Sun. The brighter star is about half as massive and large as the Sun, while its companion is about one-third the Sun’s mass and size. The new planet, K2-288Bb, orbits the smaller, dimmer star every 31.3 days.
In this animated GIF of Kuiper Belt object Ultima Thule made from two images taken 38 minutes apart, the “Thule” lobe is closest to the New Horizons spacecraft. As Ultima Thule is seen to rotate, hints of the topography can be perceived. The images were taken by the Long-Range Reconnaissance Imager (LORRI) at 4:23 and 5:01 Universal Time on January 1, 2019 from respective ranges of 38,000 miles (61,000 kilometers) and 17,000 miles (28,000 kilometers), with respective original scales of 1017 feet (310 meters) and 459 feet (140 meters) per pixel.
Apollo 8 launch - December 21, 1968
This image from Parker Solar Probe’s WISPR (Wide-field Imager for Solar Probe) instrument shows a coronal streamer, seen over the east limb of the Sun on Nov. 8, 2018, at 1:12 a.m. EST. Coronal streamers are structures of solar material within the Sun’s atmosphere, the corona, that usually overlie regions of increased solar activity. The fine structure of the streamer is very clear, with at least two rays visible. Parker Solar Probe was about 16.9 million miles from the Sun’s surface when this image was taken. The bright object near the center of the image is Mercury, and the dark spots are a result of background correction.