KREUZADER (Posts tagged Comet 67P)

1.5M ratings
277k ratings

See, that’s what the app is perfect for.

Sounds perfect Wahhhh, I don’t wanna

We weren’t really expecting to detect O2 at the comet – and in such high abundance – because it is so chemically reactive, so it was quite a surprise,” says Kathrin Altwegg of the University of Bern, and principal investigator of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument, ROSINA.

“It’s also unanticipated because there aren’t very many examples of the detection of interstellar O2. And thus, even though it must have been incorporated into the comet during its formation, this is not so easily explained by current Solar System formation models.”

rosetta comet 67p space esa

Many people from all of the Philae and Rosetta teams have worked very hard over the past few months to try and return Philae to full operational status, and these efforts will certainly continue. Current thinking is that the problems being experienced with Philae’s communications hardware are probably due to the very low temperatures experienced by the lander in the months immediately following its landing at the dark Abydos location.

But as communications were re-established on 13 June and then intermittently on several occasions since then, it is hoped that the constantly changing thermal conditions on Comet 67P/C-G will make it possible for the hardware to return to a more stable state, to re-establish contact, and to continue Philae’s unprecedented scientific measurements from the surface of the comet, a key part of Rosetta’s overall mission.

rosetta philae comet 67p space esa
“This dramatic outburst from the nucleus of Comet 67P/Churyumov-Gerasimenko occured on August 12, just hours before perihelion, its closest approach to the Sun. Completing an orbit of the Sun once every 6.45 years, perihelion distance for this...

This dramatic outburst from the nucleus of Comet 67P/Churyumov-Gerasimenko occured on August 12, just hours before perihelion, its closest approach to the Sun. Completing an orbit of the Sun once every 6.45 years, perihelion distance for this periodic comet is about 1.3 astronomical units (AU), still outside the orbit of planet Earth (at 1 AU). The stark image of the 4 kilometer wide, double-lobed nucleus in bright sunlight and dark shadows was taken by the Rosetta spacecraft’s science camera about 325 kilometers away. Too close to see the comet’s growing tail, Rosetta maintains its ringside seat to watch the nucleus warm and become more active in coming weeks, as primordial ices sublimating from the surface produce jets of gas and dust. Of course, dust from the nucleus of periodic comet Swift-Tuttle, whose last perihelion passage was in 1992 at a distance of 0.96 AU, fell to Earth just this week.

comet comet 67p rosetta space esa

Confirmed contacts between Rosetta and Philae have been made on 13, 14, 19, 20, 21, 23, and 24 June, but were intermittent during those contact periods. For example, the contact on 19 June was stable but split into two short periods of two minutes each. Conversely, the contact on 24 June started at 17:20 UT (on board Rosetta) and ran for 20 minutes, but the quality of the link was very patchy and only about 80 packets of telemetry were received. Prior to this, on Tuesday, 23 June, there was a 20-second contact, but no stable link was established and consequently no telemetry data were received.

esa rosetta philae comet comet 67p

The signals were received at ESA’s European Space Operations Centre in Darmstadt at 22:28 CEST on 13 June. More than 300 data packets have been analysed by the teams at the Lander Control Center at the German Aerospace Center (DLR).

“Philae is doing very well: It has an operating temperature of -35ºC and has 24 Watts available,” explains DLR Philae Project Manager Dr. Stephan Ulamec. “The lander is ready for operations.”

For 85 seconds Philae “spoke” with its team on ground, via Rosetta, in the first contact since going into hibernation in November.

rosetta philae comet comet 67p esa space
“The 19 regions identified on Comet 67P/Churyumov–Gerasimenko are separated by distinct geomorphological boundaries. Following the ancient Egyptian theme of the Rosetta mission, they are named for Egyptian deities. They are grouped according to the...

The 19 regions identified on Comet 67P/Churyumov–Gerasimenko are separated by distinct geomorphological boundaries. Following the ancient Egyptian theme of the Rosetta mission, they are named for Egyptian deities. They are grouped according to the type of terrain dominant within each region. Five basic categories of terrain type have been determined: dust-covered (Ma’at, Ash and Babi); brittle materials with pits and circular structures (Seth); large-scale depressions (Hatmehit, Nut and Aten); smooth terrains (Hapi, Imhotep and Anubis), and exposed, more consolidated (‘rock-like’) surfaces (Maftet, Bastet, Serqet, Hathor, Anuket, Khepry, Aker, Atum and Apis).

ESA / Rosetta / MPS for OSIRIS Team MPS / UPD / LAM / IAA / SSO / INTA / UPM / DASP / IDA

Comet 67P comet esa rosetta