KREUZADER (Posts tagged Comet 67P)

1.5M ratings
277k ratings

See, that’s what the app is perfect for.

Sounds perfect Wahhhh, I don’t wanna
Unique ultraviolet aurora spied at Rosetta’s comet
At Earth, auroras form as charged particles from the Sun interact with our planet’s magnetic field to create shimmering displays of colour and light in the high-latitude sky. While these light...

Unique ultraviolet aurora spied at Rosetta’s comet

At Earth, auroras form as charged particles from the Sun interact with our planet’s magnetic field to create shimmering displays of colour and light in the high-latitude sky. While these light displays have been seen at various planets and moons in the Solar System, and around a more distant star, observations from ESA’s comet-chasing Rosetta mission now reveal unique auroral emissions at the spacecraft’s target comet: 67P/Churyumov-Gerasimenko (67P/C-G).

These emissions are created as charged particles stream towards the comet from the Sun – a flow known as the solar wind – and interact with the gas surrounding the comet’s icy, dusty nucleus.

Source: esa.int
esa comet 67p rosetta comet

The third of a trio of music videos released by ESA to celebrate the first ever attempted soft landing on a comet by ESA’s Rosetta mission.

Vangelis, the world-renowned musician, has composed this piece of music specially for ESA and inspired by the Rosetta mission. Vangelis’s music is often linked to themes of science, history and exploration, and he is best known for his Academy Award–winning score for the film Chariots of Fire, composing scores for the films Antarctica, Blade Runner, 1492: Conquest of Paradise and Alexander, and the use of his music in the documentary series Cosmos, by Carl Sagan.

vangelis rosetta philae esa space comet comet 67p
“After closely following comet 67P/Churyumov-Gerasimenko for 786 days as it rounded the Sun, the Rosetta spacecraft’s controlled impact with the comet’s surface was confirmed by the loss of signal from the spacecraft on September 30, 2016. One the...

After closely following comet 67P/Churyumov-Gerasimenko for 786 days as it rounded the Sun, the Rosetta spacecraft’s controlled impact with the comet’s surface was confirmed by the loss of signal from the spacecraft on September 30, 2016. One the images taken during its final descent, this high resolution view looks across the comet’s stark landscape. The scene spans just over 600 meters (2,000 feet), captured when Rosetta was about 16 kilometers from the comet’s surface. Rosetta’s descent to the comet brought to an end the operational phase of an inspirational mission of space exploration. Rosetta deployed a lander to the surface of one of the Solar System’s most primordial worlds and witnessed first hand how a comet changes when subject to the increasing intensity of the Sun’s radiation. The decision to end the mission on the surface is a result of the comet’s orbit now taking it to the dim reaches beyond Jupiter where there would be a lack of power to operate the spacecraft. Mission operators also faced an approaching period where the Sun would be close to line-of-sight between Earth and Rosetta, making radio communications increasingly difficult.

Source: apod.nasa.gov
rosetta comet comet 67p esa space

above:

Rosetta’s last image of Comet 67P/Churyumov-Gerasimenko, taken with the OSIRIS wide-angle camera shortly before impact, at an estimated altitude of about 20 m above the surface.

The initially reported 51 m was based on the predicted impact time. Now that this has been confirmed, and following additional information and timeline reconstruction, the estimated distance is now thought to be around 20 metres, and analysis is ongoing

The image scale is about 5 mm/pixel and the image measures about 2.4 m across.

below:

Screenshot of the image displayed at ESA’s ESOC mission control centre showing the static received by the ground station a moment after Rosetta’s radio signal disappeared at 13:19 CEST on 30 September 2016. The loss of contact marked the end of operations.

Source: esa.int
rosetta esa comet 67p comet

Rosetta’s dust-analysing COSIMA (COmetary Secondary Ion Mass Analyser) instrument has made the first unambiguous detection of solid organic matter in the dust particles ejected by Comet 67P/Churyumov-Gerasimenko, in the form of complex carbon-bearing molecules.

While organics had already been detected in situ on the comet’s surface by instruments on-board Philae and from orbit by Rosetta’s ROSINA , those were both in the form of gases resulting from the sublimation of ices. By contrast, COSIMA has made its detections in solid dust.

rosetta comet comet 67p space biochemistry
“ Less than a month before the end of the mission, Rosetta’s high-resolution camera has revealed the Philae lander wedged into a dark crack on Comet 67P/Churyumov–Gerasimenko.
The images were taken on 2 September by the OSIRIS narrow-angle camera as...

Less than a month before the end of the mission, Rosetta’s high-resolution camera has revealed the Philae lander wedged into a dark crack on Comet 67P/Churyumov–Gerasimenko.

The images were taken on 2 September by the OSIRIS narrow-angle camera as the orbiter came within 2.7 km of the surface and clearly show the main body of the lander, along with two of its three legs.

The images also provide proof of Philae’s orientation, making it clear why establishing communications was so difficult following its landing on 12 November 2014.

Source: esa.int
esa philae rosetta comet comet 67p

The final hours of descent will enable Rosetta to make many once-in-a-lifetime measurements, including very-high-resolution imaging, boosting Rosetta’s science return with precious close-up data achievable only through such a unique conclusion.

Communications will cease, however, once the orbiter reaches the surface, and its operations will then end.  

esa rosetta comet comet 67p

The rubber-duck shape of Comet 67P/Churyumov-Gerasimenko has long been noted. The ‘neck’ of the comet is what connects the two larger lobes, as is obvious in the image below. As a new study led by Masatoshi Hirabayashi (Purdue) and Daniel Scheeres (University of Colorado) points out, two large cracks appear on the neck connecting the two larger lobes. The team simulated rotation rates for the twin-lobed assembly different from its actual 12-hour spin.

The result: Two cracks similar enough to those on 67P to show just how much stress is imparted. The rotation rate is variable in an object like this one because flybys of the Sun or of Jupiter can produce a gravitational torque. And as also appears in the photo, cometary outgassing is a factor, with compounds like carbon dioxide and ammonia sublimating from the surface. A fast enough spin produced by these factors can cause the two lobes to separate. Seven hours per rotation is what it takes for the head of the ‘duck’ to break off.

comet 67p comets space
image

Ingredients regarded as crucial for the origin of life on Earth have been discovered at the comet that ESA’s Rosetta spacecraft has been probing for almost two years.

They include the amino acid glycine, which is commonly found in proteins, and phosphorus, a key component of DNA and cell membranes.

Scientists have long debated the important possibility that water and organic molecules were brought by asteroids and comets to the young Earth after it cooled following its formation, providing some of the key building blocks for the emergence of life.

comet comet 67p rosetta esa space
image

Comets are known to be a mixture of dust and ice, and if fully compact, they would be heavier than water. However, previous measurements have shown that some of them have extremely low densities, much lower than that of water ice. The low density implies that comets must be highly porous.

But is the porosity because of huge empty caves in the comet’s interior or it is a more homogeneous low-density structure?

In a new study, published in this week’s issue of the journal Nature, a team led by Martin Pätzold, from Rheinische Institut für Umweltforschung an der Universität zu Köln, Germany, have shown that Comet 67P/Churyumov-Gerasimenko is also a low-density object, but they have also been able to rule out a cavernous interior.

This result is consistent with earlier results from Rosetta’s CONSERT radar experiment showing that the double-lobed comet’s ‘head’ is fairly homogenous on spatial scales of a few tens of metres.

esa rosetta comet 67p comets space
“A short-lived outburst from comet 67P/Churyumov-Gerasimenko was captured by Rosetta’s OSIRIS narrow-angle camera on July 29, 2015. The image at left was taken at 13:06 Greenwich Mean Time (GMT) (6:06 a.m. PDT), and does not show any visible signs of...

A short-lived outburst from comet 67P/Churyumov-Gerasimenko was captured by Rosetta’s OSIRIS narrow-angle camera on July 29, 2015. The image at left was taken at 13:06 Greenwich Mean Time (GMT) (6:06 a.m. PDT), and does not show any visible signs of the jet. It is very strong in the middle image captured at 13:24 GMT (6:24 a.m. PDT). Residual traces of activity are only very faintly visible in the final image taken at 13:42 GMT (6:42 a.m. PDT).

The images were taken from a distance of 116 miles (186 kilometers) from the center of the comet. The jet is estimated to have a minimum speed of 33 feet per second (10 meters per second) and originates from a location on the comet’s neck.

(source)

comet 67p rosetta space comet esa